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Abstract— An often overlooked element of the interactive data visualization stack is the human in the loop. While computational and
data processing capabilities have increased over time, human limits have remained constant. In this light, we describe extensions to
client-server database-driven visualization systems that are both customized to interactive workloads, and support perceptual models
that approximate the human’s ability to decode visually encoded information. We recognize and accommodate human perceptual
limitations as a way to minimize computation, network and rendering costs, and support high frame-rate interactions. Based on these
models, we propose to answer a critical question: how can these models inform approximation decisions that improve end-to-end
visualization performance? In this short paper, we describe research efforts towards using these limits to automatically approximate
data transformations that are perceptually indistinguishable while applying database optimization techniques to minimize latency.
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Data visualizations are an information-dense and intuitive method
to represent and communicate information. The ideal visualization
tool should made it easier to both perform ad-hoc explorations of a new
dataset, and to create highly interactive dashboards that consumers can
use to explore a curated subset of the data. In contrast to existing vi-
sualization tools that largely present a small handful of analyses in the
form of static visualizations, the increasing client processing power,
and the advent of novel input interfaces such as touch, pen, and ges-
tures [22] present the opportunity to support an increasingly popular
class of direct manipulation visualization interfaces. This form of vi-
sualization not only gives users the ability to freely explore facets of
the data they are interested in, and follow their own hypotheses, but
speeds the responsiveness of the visualization so that responding to
user inputs is eliminated as a bottleneck in data analysis.

Fig. 1: Multi-dimensional interactive visualization of checkin data.

As an example, Figure 1 illustrates a multidimensional brushing
and linking visualization [19] that renders the count of airline flights1

along different dataset attributes. Selecting over any part of the bar
charts will filter the dataset by the selected attribute value and update
the counts in the other views – each movement of the user’s mouse
translates into executing and rendering a new set of database queries
with different grouping or filtering parameters. By ensuring that the
visualization reacts to user feedback within tens of milliseconds, the
individual visualizations (frames) become perceptually fused [2] into
a single, smooth animation. This form of immediate feedback enables
“what-if” questions that are otherwise cumbersome to ask using point
and click interfaces [6]. For example, users may wonder if there is a
trend across a connected stretch of mid-western states and simply drag
their mouse across a swath of the U.S. to see statistics change in the
visualization in real time. This allows the user to use the motion in the
interactive visualization as an additional source of insight. Looking
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towards the future, visualization interfaces, virtual reality, and motion
tracking-based systems all demand such high frame rate interactions.

In order for direct manipulation to feel natural, it is imperative that
interaction latency is minimized. Empirical evaluations demonstrate
that increased latency adversely influences data exploration behav-
ior [18], heavily motivating low latency (e.g. sub-second) performance
windows for end-to-end feedback.

Unfortunately, today’s client-server visualization architectures
make creating highly interactive visualizations challenging. Such ar-
chitectures combine a visualization front-end that sends queries to a
DBMS backend through a generic database API, and renders the query
results. Even as DBMS technology improves (e.g., columnar-stores,
in-memory databases, approximate query processing), the roundtrip
costs of network de/serialization and transfer, query processing, and
rendering are unacceptably high for the hundreds of queries generated
by user manipulations each second. In addition, as dataset sizes in-
crease, and the demand for more powerful exploration, annotation, and
analysis features [10, 28] continues to grow, supporting these interac-
tions will only become more challenging. We believe the key issue
is that the interface between the client and server continues to expect
generic, independent queries that produce exact answers, which ob-
scures the reality in which highly interactive visualizations generate
bursts of strongly correlated queries whose results are ultimately per-
ceived by humans.

Our proposed system, InterVis, approaches the client-server archi-
tecture from both sides . We find that many high-frame rate interac-
tions follow a common query pattern and abstract this pattern into a
set of SQL query extensions that we call exploration specifications.
In addition, we note that the end product (visualization) is consumed
by users through a lossy perceptual process, and explicitly model these
inaccuracies as perceptual functions. Together, InterVis leverages both
of these extensions to perform more aggressive approximations, pre-
computation, caching, and other optimizations that enable the ability
to trade-off end-to-end interaction latency with the visualization’s per-
ceptual accuracy.

1 THE INTERVIS SYSTEM

InterVis is designed to be an end-to-end data exploration system that
considers the overall interaction of a user with the visualization. By
leveraging user-level aspects such as user perception and session-
based interactions, the system is able to perform optimizations that
were not possible with an interaction-agnostic approach.

Prior work in visualization systems often trade-off between expres-
siveness and performance. Expressive toolkits [3, 12] often require
low-level programming that impedes the ability to quickly iterate,
while declarative grammar-based languages [1, 31] allow for iteration
during visualization design but are restricted within their host envi-
ronments (SPSS, R). Similarly, tools such as Lyra [25] have focused
on expressivity and interaction for building visualizations rather than
interactivity of the final visualization itself. Recent systems address
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data scalability limitations by either adopting specific data manage-
ment techniques such as pre-computation [19], indexing [17], sam-
pling, speculation, and aggregation [16] or developing two-tiered ar-
chitectures where the visualization client composes and sends queries
to a data management backend [13, 23, 28]. The former approaches
are optimized towards properties of specific applications or visualiza-
tion types and may not be broadly applicable. The latter approach
isolates each tier in the architecture and gives up numerous optimiza-
tion opportunities. As shown in Figure 2, given the requirements of
ad-hoc data exploration over large datasets, users are often left with a
choice between High frame-rate interactivity and Approximation,
instead of having both: this motivates the design of InterVis.
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Fig. 2: Visualization projects by approximation type (y-axis) and rate
of interactivity (x-axis).

1.1 Data and Execution Model
We use the relational data model for InterVis. For simplicity, we as-
sume that a relation’s attributes A can be partitioned into dimension
AD ⊆ A, measure AM ⊆ A, and general AG ⊆ A attributes.

We model visualization views as two-tier SQL aggregation queries
with parameterized filter clauses. As a starting example, consider
the Time of Day histogram in Figure 1. A simplified version can be
represented by aggregating on hour, parameterized on the values of
arrival delay, date and distance:

SELECT hour, COUNT(*) FROM T

WHERE arrival delay = ? AND distance = ? AND date = ?

GROUP BY hour

The parameterized values in the predicate clauses (e.g., the ? in
day=?) are defined by the user’s interactions when selecting bars
in the histograms adjacent to the Time of Day histogram and can be
any subset of the values in its corresponding attribute domain, or a
special value <all> that matches all values. Similarly, each of the
three histograms are themselves parameterized by the user’s selection
in the other visualization views. Under this model, an interaction such
as moving the mouse across the date view represents a sequence of
queries that vary the date parameter.

1.2 Exploration Specifications
We build upon this notion of parameterized queries as a fundamental
construct of defining interactive visualizations. In order to articulate
the separation of data exploration at the frontend and query processing
at the frontend, we consider a two-tier approach: the data that is to
be explored is considered a query, and then visualizations are modeled
as queries over the result of the former query. Thus, our query model
takes interactions into account by modeling visualizations as nested
parameterized queries of the form:

SELECT gb0, . . ., gbm, agg0(v0),. . .

FROM (

SELECT gb’0, ..., gb’p, agg’0(v’0),...

FROM T1 (JOIN T2 ON ax)?

WHERE gb’0 = ? and ... a’0 = ? ...

GROUP BY gb’0, ..., gb’p

) as exploration data

WHERE gb0 = ? and ... a0 = ?, ... and an = ?

GROUP BY gb0, ..., gm

RENDERED BY <chart>, E1, ...,

PERCEIVED BY P1,...

where gb denotes GROUP-BY-eligible dimensions, e.g., lat, lon.
Filter predicates are denoted by a, e.g., hour. agg denotes analytic
measures, e.g., COUNT. The presence of ? denotes scope for inter-
active exploration along that element – allowing a user to explore not
only filter predicates, but also grouping conditions and joins.
RENDERED BY and PERCEIVED BY are visualization specific

language extensions to support models for visualization rendering
and human perception, respectively. The former clause specifies a
chart type that the query should be rendered in, followed by a series
of invertible encoding functions Ei that map attributes in the SELECT
clause to properties of the visualization elements e.g., height of a bar.
For example, if the visualization linearly maps agg0(v0) from a do-
main of [0,106] to a canvas height of 100 pixels, the function ef-
fectively discretizes the input domain using the function Eheight(v) =
f loor( v

104 ). The PERCEIVED BY clause defines a set of perceptual
functions Pi that model the user’s inaccuracy when perceiving visu-
ally encoded information e.g., decoding numerical values encoded in
color. These new clauses capture the visualization semantics that are
necessary for the optimizations in the next sections. To summarize the
end-to-end process, the value that a user perceives is first computed
by the standard SQL components of the nested query, then encoded
into pixels using the encoding functions, and finally, the human eye’s
decoding process is modeled by applying the perceptual functions.

We call this two-tier parameterization an exploration specification
for an interactive visualization. It allows developers to articulate the
demands that an interactive visualization will be putting forth towards
the database. There are several benefits to this model: by decoupling
the visualization from the query, both the visualization and the un-
derlying data can be interchangeably swapped out with a replacement
during data exploration. Another benefit of our template-based query
model is that we can distinguish between different classes of param-
eterization depending on which query clause is parameterized: JOIN
clause (e.g., ax =?), GROUP BY clause (e.g., gbi =?), filter on ag-
gregated attribute (e.g., vi =?), or filter on a non-aggregated attribute
(e.g., ai =?). Each of these conditions can be catered to by a variety
of optimizations to enable fluid and interactive visualizations. Thus,
exploration specifications are a convenient and concise representation
of visualization stacks, providing algorithmic hooks for several inde-
pendent research contributions.

1.3 InterVis Architecture

Interaction session JSON 

DBMS 

Visualization System 

InterVis 
Queries, 

Perceptual funcs Result set 

Perceptual Execution 

Network 

Interaction Pixels 

Frontend 

Backend 

Fig. 3: System architecture
InterVis is designed as a client-server system where a visualization

frontend translates user interactions into a sequence of annotated SQL
queries that are executed in a backend database system. The key idea
of the system is that every layer of the architecture is interaction-
aware: requests throughout the system are session-based and interac-
tion hints such as models of perceptual inaccuracy are factored into
both the frontend and the backend execution engine.

Current interactions in visualizations, such as sliders and scroll
bars, will generate a new query for each user action (e.g., dragging
the bar by one pixel). Without additional information, InterVis would
simply trigger a re-computation of the entire query and rendering
pipeline. Since requerying for each frame with the backend would



involve roundtrips through multiple levels of abstraction and network
latencies, serving such queries at scale can be slow, wasteful, and
moreover untenable, which can prove detrimental to the data explo-
ration process [18]. Thus, we model a series of such queries as part of
a session, where there is little difference between successive queries
within a session, e.g., queries differing only on the value of one of
their WHERE predicates. We call each query in the session a frame, to
underscore the importance of the interaction’s animation.

In the context of this architecture, we focus on a perceptually moti-
vated challenge: Instead of simply considering the task of generating
a visual representation of the query result, we consider the insight per-
ceived by the user from the interaction with the visualization. Given
large datasets and human limitations in perceiving fine-grained details,
we detail modifications to the database execution engine that facilitate
the use of visualization-aware approximation. In the remaining sec-
tions of this short paper, we focus on our approach towards perceptu-
ally accurate visualizations through the use for perceptual functions.

2 PERCEPTUAL FUNCTIONS FOR INVISIBLE APPROXIMATE
INTERACTIONS

Practical limits due to both the finite pixel density of the output view-
port and human limitations in perceiving small differences in visually
encoded values [5] (e.g., color, position) make approximation a nat-
ural fit for quickly computing and rendering data visualizations with-
out large perceivable differences. Although query approximation has
been well-studied [24], they neither take the interaction sessions into
account, nor are designed for supporting bursts of queries during an
interaction. The latter is problematic, because the faster the user inter-
acts with a visualization, the higher the rate of queries yet the less time
available to service each query. Simply increasing the approximation
error until each query can be computed quickly enough is undesirable,
because the error bounds may be impractically large.

One approach is to develop specialized approximation algorithms
that preserve specific features in a visualization e.g., pairwise relative
differences in a bar chart. However, we would need to enumerate ev-
ery visualization feature and custom tailor an algorithm for each one.
In contrast, we observe that the visualization, psychology, and HCI
communities have established and are actively developing mathemat-
ical models of graphical perception [5, 7, 9, 15, 26, 27, 30] that may
be used in a general optimization framework demarcating the human
limits of perceiving visual changes. These models hold promise for
improving query performance for interactions.

An important class of graphical perceptual models describe how
accurately humans can perceive (i.e. decode) values that are visually
embedded as e.g., the height of a bar in a bar chart. For example,
the power law of psychophysics models the perceived magnitude of
a visually encoded value using a power law relationship with the ac-
tual value [27]. A related class of models [5, 9, 30] measure the per-
ceived error when making proportional comparisons between visual
encodings, for example, comparing the heights of two adjacent bars
in a bar chart. Although these results have been used to make quali-
tative judgements of visualizations and help rank visual encodings by
effectiveness (e.g., encoding numerical values using length is prefer-
able to area), usage of these models for query execution has not been
explored.

In light of this area of research, we are studying the use of percep-
tual functions in the PERCEIVED BY clause in the query execution
engine for making approximation and filtering-based optimization de-
cisions. A perceptual function is defined for a specific combination
of visual properties vp (e.g, height in a bar chart) and returns the per-
ceived error (e.g., perceiving a 100 pixel height by ±5 pixels). We
currently focus on two general forms of functions: univariate func-
tions Pu

e : R→ R that map a visually encoded value to the perceived
error, and bivariate functions Pb

e : R×R→ R that map a pair of en-
coded values to the error in the perceived proportional differences. In
both cases, the computed error ±ε describes the value range that the
encoded value may be perceived within. This general formulation of
the perceptual functions lets InterVis support a range of models found
in the literature — from models that compute a single error value for

an encoding (e.g., 2% when comparing adjacent bars [5]), to those
whose error varies as a function of the true proportional difference [5],
to those that depend on the magnitude of the true values [8]. In ad-
dition, InterVis does not rely on any specific perceptual functions and
can thus adapt to new models as they are developed and refined, as
well as support personalized perceptual models [4].

InterVis analyzes and annotates new interaction sessions with the
applicable perceptual functions that match the encodings used by the
visualization. These perceptual functions are composed with simi-
lar functions defined by the encodings in the RENDERED BY clause.
For example, the universally applicable perceptual function2 Pu

∗ (v) is
composed with its matching encoding function E to create the func-
tion (E ◦Pu

∗ )(v) that is sent to the query executor. During execution,
InterVis uses perceptual approximation to prioritize and manage ap-
proximation decisions for the query results, and perceptual filtering to
avoid computing and returning results. The techniques we describe
below integrate ideas from prior database sampling and online aggre-
gation work [11] with perceptual functions to build towards automated
optimization approaches based on these functions. By informing the
execution engine of human perception, we are able to reduce compu-
tational requirements to serve each exploration specification.

Perceptual Approximation: A naive approach to using perceptual
functions for approximation is to use the perceived error as the error
bound for picking the input sample size. For example, suppose the
query result is a single value v, the encoding and perceptual functions
are E and P, respectively, and the perceived error is ε = (E ◦P)(v).
Then the user perceives the visual encoding between

¯
ε = v− ε and

ε̄ = v+ ε . Inverting E and P results in the perceivable margin of er-
ror for the query result (E ◦P)−1(ε̄)− (E ◦P)−1(

¯
ε). Finally, InterVis

can derive an estimate of the sample size needed to compute v within
the margins at a given confidence interval by using closed form equa-
tions [20].

As a proof of concept to evaluate the potential benefits, we ran a
preliminary experiment using a synthetic dataset containing 1 million
single-attribute records and measured the effect on sample size when
the aggregated result (using AVG) maps to opacity. We generated each
attribute value from a normal distribution with mean µ and standard
deviation σ = 10, and varied µ from 1 to 105. Furthermore, let v̄,

¯
v be

the minimum and maximum attribute values in the dataset. We eval-
uated all combinations of four PERCEIVED BY clauses: each with
a constant function that returns 10−5,50−4,10−4, or 50−3 – and two
encoding functions for opacity: a simple linear mapping [

¯
v, v̄]→ [0,1]

into the opacity space E1(v) =
v−

¯
v

v̄−
¯
v , and a mapping that is approxi-

mately perceptually linear3 E2(v) = 0.15+ v−
¯
v

v̄−
¯
v

1
3 × (1− 0.15). Fig-

ure 4 reports the average determined sample size (log scale) as a func-
tion of µ over 20 runs. We find that for both encoding functions, even
a small perceptual error of 10−5 can reduce the the determined sam-
ple size by 104×, whereas larger perceived errors can reduce the size
by orders of magnitude. In addition, the trends for the perceptually
linear encoding function show that the sampling size can depend sig-
nificantly on the aggregated value.

Although these results are promising, the key limitation of the naive
approach is that it assumes v has been fully computed (P(v) depends
on v), however, that assumption defeats the purpose of sampling dur-
ing query execution. One direction is to push the evaluation of per-
ceptual functions into the query execution process, so that the margins
of error are refined in concert with the estimation of the aggregation
result values. Further, we plan to study various stopping criteria based
on how quickly the estimated aggregation results converge, both for
each query result individually, and for the query result set as a whole.

Perceptual Filtering: Whereas the previous approach performs opti-
mization for individual queries, perceptual filtering compares query re-

2InterVis uses the error from decoding a visually encoded value to optimize
query execution, e.g., Pu

∗ = 0 is the most conservative possible function.
3This mapping is borrowed from prior work [19], which in turn used results

from CIELAB [29] and prior results for luminance contrast [9, 21]
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Fig. 4: Determined sample size as a function of true distribution mean
for different perceptual functions.

sults between adjacent interactive frames (e.g., Qi−1 and Qi) and filters
away results in Qi that are perceptually similar to those in Qi−1 (where
Qi−1 has been executed already and Qi is the current query). This fil-
tering uses the bivariate perceptual functions Pb to compare records
with the same GROUP BY values in Qi−1 and Qi, and filter records in
Qi whose estimated difference to the corresponding record in Qi−1 is
within the error computed by Pb. The approach serves to reduce the
network latency for both transferring results to the client and updating
the rendered visualization (similar to M4 [14]), and to decrease the re-
quired cache size in the client cache. The key challenge is to push this
filtering process into the query plan so that intermediate results that
will not be perceived are pruned early on. In addition to techniques
similar to perceptual approximation, univariate perceptual functions
present opportunities to more aggressively prune intermediate results
by analyzing how the univariate function’s error bound overlaps with
that of the bivariate functions. Window functions provide a suitable
mechanism for expressing perceptual filtering, and similar ideas may
be considered when frames are not adjacent (e.g., Qi and Qi+n where
n > 1) or when comparing more than two frames.

Function Selection: Although an exploration specification may define
multiple functions in the PERCEIVED BY clause, it is unclear how
multiple perceptual functions will be used together for the above, nor
is it clear if combining them is safe. Thus, an additional challenge is
to select the optimal perceptual function to use. For the former, given
a set of functions P= {P1, . . . ,Pn}, how should the optimal P∗ ∈ P be
selected for a given query? This policy depends on the curve of each
function, as well as the values of each result record. For example, the
univariate functions Pu

1 (v) = 0.5× v is preferable to Pu
2 (v) = 1 when

v < 2, however the latter provides more optimizations when v > 2.
Thus, efficiently picking the optimal P∗ must be performed during
query execution.

Perceptual Experiments: Interaction results in animation, however
the perception of animated data visualization is poorly understood de-
spite numerous perceptual studies for static visualizations and time-
varying encoding such as video and audio. In short, perceptual func-
tions for animated data visualizations are an uncharted area of work.
We have been running two perceptual judgment experiments in the
context of animated bar charts (e.g., a bar chart changes in response
to user interactions with a scroll bar). Our studies vary data properties
such as when the target bar reaches a maximum or simulated forms
of approximation, as well as animation properties such as the frame
rate or how a target bar is marked. In the value reading [32] task,
users are asked to estimate the maximum value of a target bar during
the animation. Preliminary results have found that when the target bar
does not exhibit sudden changes (e.g., an impulse), user perception is
largely invariant of the frame rate, even in the presence of noise. In
contrast, perceptual accuracy drops significantly if the target achieves
a maximum value early (in the first 10%) in the animation.

These findings can help us better understand which components of
an animation are good candidates for approximation, at what levels of
approximation, and under which settings.
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